skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhou, Fangting"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Multivariate functional data arise in a wide range of applications. One fundamental task is to understand the causal relationships among these functional objects of interest. In this paper, we develop a novel Bayesian network (BN) model for multivariate functional data where conditional independencies and causal structure are encoded by a directed acyclic graph. Specifically, we allow the functional objects to deviate from Gaussian processes, which is the key to unique causal structure identification even when the functions are measured with noises. A fully Bayesian framework is designed to infer the functional BN model with natural uncertainty quantification through posterior summaries. Simulation studies and real data examples demonstrate the practical utility of the proposed model. 
    more » « less
  2. Abstract Bayesian networks have been widely used to generate causal hypotheses from multivariate data. Despite their popularity, the vast majority of existing causal discovery approaches make the strong assumption of a (partially) homogeneous sampling scheme. However, such assumption can be seriously violated, causing significant biases when the underlying population is inherently heterogeneous. To this end, we propose a novel causal Bayesian network model, termed BN-LTE, that embeds heterogeneous samples onto a low-dimensional manifold and builds Bayesian networks conditional on the embedding. This new framework allows for more precise network inference by improving the estimation resolution from the population level to the observation level. Moreover, while causal Bayesian networks are in general not identifiable with purely observational, cross-sectional data due to Markov equivalence, with the blessing of causal effect heterogeneity, we prove that the proposed BN-LTE is uniquely identifiable under relatively mild assumptions. Through extensive experiments, we demonstrate the superior performance of BN-LTE in causal structure learning as well as inferring observation-specific gene regulatory networks from observational data. 
    more » « less
  3. null (Ed.)
    Summary High-throughput sequencing technology provides unprecedented opportunities to quantitatively explore human gut microbiome and its relation to diseases. Microbiome data are compositional, sparse, noisy, and heterogeneous, which pose serious challenges for statistical modeling. We propose an identifiable Bayesian multinomial matrix factorization model to infer overlapping clusters on both microbes and hosts. The proposed method represents the observed over-dispersed zero-inflated count matrix as Dirichlet-multinomial mixtures on which latent cluster structures are built hierarchically. Under the Bayesian framework, the number of clusters is automatically determined and available information from a taxonomic rank tree of microbes is naturally incorporated, which greatly improves the interpretability of our findings. We demonstrate the utility of the proposed approach by comparing to alternative methods in simulations. An application to a human gut microbiome data set involving patients with inflammatory bowel disease reveals interesting clusters, which contain bacteria families Bacteroidaceae, Bifidobacteriaceae, Enterobacteriaceae, Fusobacteriaceae, Lachnospiraceae, Ruminococcaceae, Pasteurellaceae, and Porphyromonadaceae that are known to be related to the inflammatory bowel disease and its subtypes according to biological literature. Our findings can help generate potential hypotheses for future investigation of the heterogeneity of the human gut microbiome. 
    more » « less